منابع مشابه
RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملHypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملForm, function, and geometric morphometrics.
Geometric morphometrics (GM) has increasingly become an important tool in assessing and studying shape variation in a wide variety of taxa. While the GM toolkit has unparalleled power to quantify shape, its use in studies of functional morphology have been questioned. Here, we assess the state of the field of GM and provide an overview of the techniques available to assess shape, including aspe...
متن کاملGenerating an Indoor space routing graph using semantic-geometric method
The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...
متن کاملGeometric characteristics of conies in Bézier form
Keywords: Conic sections Bézier curves Eccentricity Asymptotes Axes Foci In this paper, we address the calculation of geometric characteristics of conic sections (axes, asymptotes, centres, eccentricity, foci) given in Bézier form in terms of their control polygons and weights, making use of real and complex projective and affine geometry and avoiding the use of coordinates.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: İnsan ve Toplum Bilimleri Araştırmaları Dergisi
سال: 2020
ISSN: 2147-1185
DOI: 10.15869/itobiad.792452